Utilizing SELinux in Embedded Devices

Chad Sellers
Lead Software Architect
Product Solutions Group
Tresys Technology
Outline

• Background on SELinux
• Useful things you can do with SELinux
 • examples of what you can do with SELinux
 • flexibility of SELinux
• Useful features
 • Dynamic policy
 • Structured policy
 • Policy management
 • Policy development
What is SELinux?

• Enhancement to Linux Kernel and utilities
 • not a stand-alone distribution
 • available as part of major distributions
• Incorporates flexible mandatory access control
 • primarily through type enforcement
 • cooperates with other security enhancements (execshield)
• Provides a rich and flexible MAC policy language
• Maintains binary compatibility for programs
 • unmodified Linux applications can be controlled
Mandatory Access Controls (MAC)

- Access Control in general
 - subjects and objects have security attributes
 - access determined based on policy rules
- Discretionary Access Control
 - users can change security attributes at request
 - allowing programs running on behalf of a user to affect the results of access rules
- Mandatory Access Control
 - users cannot change security attributes at request
 - user programs must work within the constraints of rules
 - MAC rules are controlled by the organization, not the user
Type Enforcement

- A type is an unambiguous identifier
 - created by the policy writer
 - applied to all subjects and objects and for access decisions
- Types group subjects and objects
 - signifies security equivalence
 - everything with the same type has the same access
 - policies have as few or as many types as needed
Type Enforcement

- Access specified between
 - subject type (e.g., process or domain)
 - and object type (e.g., file, dir, socket, etc.)
- Four elements in defining allowed access
 - source type(s) aka domain(s)
 - target type(s) objects to which access allowed
 - object class(es) classes to which access applies
 - permission(s) type of access allowed
- SELinux prevents access unless explicitly allowed
Where is SELinux being used

- Distributions
 - Fedora 2-7
 - Red Hat Enterprise Linux 4 and 5
 - Hardened Gentoo
 - Debian Etch
 - Montavista
 - others
- Government applications
- Regular users
- Embedded applications
Solving your security problems

- SELinux is useful for solving your security problems
- Examples
 - protecting data from disclosure
 - limiting attack vectors to an application
 - protecting data integrity
 - containing untrusted programs
Protection from disclosure

- Most applications do not need access to important data
 - even those that do typically only need a limited set of files
- SELinux can be used to limit access to important data to only those processes that need it
 - give important files a special type
 - only allow access to those processes that need it
- Reduces trust placed in applications
Protection from disclosure

- Example
 - cell phone application vulnerable to rogue network
 - attacker masquerades as trusted server
 - attacker compromises application to pilfer data
- SELinux can
 - limit access of application to only what it needs
 - this limits the damage of the exploit
- Demo
Limiting attack vectors

• Attackers are constantly finding new attack vectors
 • fixing yesterday’s hole is insufficient
• Developers must reduce attack surface
 • unnecessary access should be blocked
 • unused access vectors are asking for trouble
Limiting attack vectors

- Simple example - firewall
- SELinux network controls
 - firewall at the process level
- Example
 - update application
 - requires significant permission to perform update
 - need to reduce attack surface
 - limit network access to your corporate IP space
 - only limit for the update application
 - other applications can still access what they need
- Policy demo
Protecting data integrity

- `/etc/passwd`
 - pervasive need to read
 - integrity of this file is very important
- Anyone who can modify this file can
 - change their UID to 0
 - lock out another user
 - etc.
Protecting data integrity

- SELinux can
 - limit write access to /etc/passwd
 - /usr/bin/passwd needs access
 - limit who can run /usr/bin/passwd
 - control passwd’s power based on who launched it
 - not really useful in this example though
- Still have to trust application to do its job
 - /usr/bin/passwd can write to /etc/passwd
 - trust it to only change the appropriate user line
Protecting data integrity

login

fork()

bash

execve()

passwd

/etc/passwd

/etc_passwd_t

write(), create(), unlink()

allow passwd_t etc_passwd_t : file { write create unlink };

user_t

passwd_t

passwd_exec_t

/usr/bin/passwd
Containing untrusted programs

- Often need to run programs we don’t trust
 - mobile code downloaded to the device from an untrusted source
 - code written by another company
 - code written by that guy that you don’t trust
- Running these programs without restriction is too risky
- Sandboxing
 - common technique for containing untrusted code
 - most common methods tend to be
 - heavyweight
 - inflexible
 - SELinux can be used as a lightweight flexible sandbox mechanism
Containing untrusted programs

- Example
 - device allows users to download and execute code from arbitrary sources
 - basic common functionality is known a priori
- SELinux can be used to
 - create multiple sandbox buckets
 - allow basic functionality for those buckets
 - access network
 - perhaps access display
- Walls of the sandbox are determined by the policy author
- No additional infrastructure necessary
 - apps utilize the normal system filesystem as permitted by the policy
 - apps run as normal processes, no need for additional supervisor layer
Useful features

- Conditional policy
 - run-time policy change
- Reference Policy
 - structured policy to build on
- Policy management
 - because things always change
- Policy development
 - tools to build your policies
Conditional policy

- Blocks of policy controlled by a boolean expression
- Booleans can be set at run-time
 - using setsebool command, libselinux API, or selinuxfs pseudo-filesystem directly
 - access control is applied to the setting of booleans
- Kernel policy enforcement based on boolean settings
- Useful for operating differently under different modes
 - threat-based
 - configuration-based
Reference Policy

• A new SELinux policy that
 • reduces the complexity of writing, maintaining, and analyzing policy
 • uses modern software engineering principles
 • is well documented, modular, and configurable
 • provides a single source for all the policy variants

• Together this will make a policy that is…
 • maintainable
 • verifiable
 • usable
Layer: admin

Policy modules for administrative functions, such as package management.

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>acct</td>
<td>Berkeley process accounting</td>
</tr>
<tr>
<td>alsal</td>
<td>Aint ALSA configuration tool</td>
</tr>
<tr>
<td>amanda</td>
<td>Automated backup program.</td>
</tr>
<tr>
<td>anaconda</td>
<td>Policy for the Anaconda installer.</td>
</tr>
<tr>
<td>apt</td>
<td>APT advanced package toll.</td>
</tr>
<tr>
<td>backup</td>
<td>System backup scripts</td>
</tr>
<tr>
<td>bootloader</td>
<td>Policy for the kernel modules, kernel image, and bootloader.</td>
</tr>
<tr>
<td>certwatch</td>
<td>Digital Certificate Tracking</td>
</tr>
<tr>
<td>consoletype</td>
<td>Determine of the console connected to the controlling terminal.</td>
</tr>
<tr>
<td>ddcprobe</td>
<td>ddcprobe retrieves monitor and graphics card information</td>
</tr>
<tr>
<td>dmesg</td>
<td>Policy for dmesg.</td>
</tr>
<tr>
<td>dmidecode</td>
<td>Decode DMI data for x86/a64 bioses.</td>
</tr>
<tr>
<td>dpkg</td>
<td>Policy for the Debian package manager.</td>
</tr>
</tbody>
</table>
Management tools

- **libsemanage**
 - library for policy management
 - provides ability to make changes to the policy
- **Tools built on libsemanage**
 - semodule (policy modules)
 - semanage
- **Commercial applications**
 - Tresys Brickwall
Policy development tools

- SLIDE
 - open source
 - basic policy editor for use with Reference Policy
- Tresys Bedrock
 - commercial
 - Integrated tool for development and debugging
- others
Conclusion

- SELinux can probably address your security problems
 - flexible enough to address many situations
 - must understand the limits of SELinux and security architecture to fully utilize
 - not just for government high-security needs
- SELinux is getting easier and more useful
 - solid foundation
 - tools developing rapidly to increase usability
Links

- http://www.tresys.com
- http://www.usefulsecurity.com
- http://securityblog.org
- csellers@tresys.com